SHRI GNANAMBICA DEGREE COLLEGE: MADANAPALLE

(AUTONOMOUS)

COURSE 2: MATHEMATICAL FOUNDATION FOR AI

Program: BSC (AI) SEMESTER I (W.E.F.2025-26)

Hours per week: 5

Credits: 4

Course Objectives

- 1. Develop a strong foundation in linear algebra, set theory, and functions essential for AI.
- 2. Understand and solve systems of linear equations using matrix methods.
- 3. Gain knowledge of eigenvalues, eigenvectors, and matrix diagonalization.
- 4. Learn fundamental concepts of probability and statistics for data analysis.
- 5. Explore functions and their applications relevant to AI problem-solving.

Course Outcomes

- 1. Solve complex linear algebra problems including matrix properties.
- 2. Apply set theory rigorously and compute eigenvalues/eigenvectors for intermediate examples.
- 3. Understand differentiation rules and solve constrained optimization problems.
- 4. Calculate probabilities in varied scenarios and explore discrete random variables.
- 5. Analyze data using comprehensive statistical measures and interpret visualizations.

Unit 1

Matrices, Basic Linear Algebra and Systems of Linear Equations:

Basics and operations of Matrices (addition, multiplication, transpose, inverse).

Elementary row operations: row swapping, scalar multiplication, row addition, Row Echelon Form (REF), Rank of matrix by using Echelon form.

System of linear equations: coefficient and augmented matrix representation

Types of solutions: unique, infinite, no solution, Gaussian elimination method using REF.

Unit 2

Set Theory and Eigen Concepts:

Sets, subsets, set operations (union, intersection, difference, complement), Venn diagrams, Cartesian products.

Eigenvalues, eigenvectors, characteristic polynomial, Statement of Caley Hamilton Theorem and problems.

Unit 3

Functions and their Properties:

Definition, types of functions (polynomial, rational, exponential, logarithmic), Domain, range, and inverses of functions, Composition of functions, Limits and Continuity, Graphical representation of functions, Maxima & Minima of functions for linear and Quadratic functions.

Unit 4

Vector Differentiation:

Vector differentiation —ordinary — derivatives of vectors — Differentiability — Gradient — Divergence - Curl operators - Directional derivatives of functions.

Unit 5

Basic Statistics:

Definition, Importance and Limitations of statistics. Classification and Tabulation of Data. Construction of Frequency distribution tables. Data representation: Histograms and Bar charts.

Measures of central tendency: Mean, Median, Mode.

Measures of dispersion: Range, inter quartile range, variance, standard deviation.

Textbooks and References

- 1. Mathematics for Machine Learning, M. P. Deisenroth, A. A. Faisal, C. S. Ong, Cambridge University Press, 2020.
- 2. Introductory Linear Algebra, Howard Anton, Wiley.
- 3. Probability and Statistics for Engineers and Scientists, Ronald E. Walpole, Wiley.
- 4. Discrete Mathematics and its Applications, Kenneth H. Rosen, McGraw Hill.
- 5. Online Resources: Khan Academy, MIT Open Course Ware (Linear Algebra, Probability, Statistics, Functions).

Activities:

Unit 1 Activity:

Solve advanced linear equation systems using elementary row operations; explore matrix rank with concrete examples; interpret solutions graphically.

Evaluation Method: Assess problem-solving accuracy, clarity of solution process, and ability to classify solution types.

Unit 2 Activity:

Practice set theory problems including Venn diagrams, unions, intersections; compute eigenvalues/eigenvectors for 3x3 matrices; perform matrix diagonalization exercises.

Evaluation Method: Evaluate completeness of set operations, correctness of eigen computations, and accuracy in diagonalization.

Unit 3 Activity:

Plot and analyse various types of functions (polynomial, exponential, logarithmic); solve problems on function composition and inverses; perform simple graphical interpretations.

Evaluation Method: Assess quality of function plots, conceptual clarity of compositions and inverses, and accuracy of graphical analyses.

Unit 4 Activity:

Calculate conditional probabilities; simulate discrete probability distributions; apply Bayes' theorem in practical scenarios (e.g., medical testing, reliability analysis).

Evaluation Method: Evaluate correct application of probability laws and rules, and logical use of Bayesian inference.

Unit 5 Activity:

Analyse sample datasets to calculate central tendency measures and dispersion; compute correlation coefficients; create histograms and scatter plots; interpret data insights. Evaluation Method: Assess accuracy of statistical calculations, clarity and correctness of visual data representation, and quality

finterpretation.

CHAIRM BOARD OF S

Shri Gnanambica Degree College

SHRI GNANAMBICA DEGREE COLLEGE: MADANAPALLE

(AUTONOMOUS)

Program: BSC (AI) SEMESTER I

COURSE 2: MATHEMATICAL FOUNDATION FOR AI

(W.E.F. AY 2025-26)

Question Paper Blue Print

Time: 3hrs Max. Marks: 70

PART-A

Answer any 4 of the following. Each Question Carries 5 marks.

 $(4 \times 5 = 20)$

- 1. Unit-1
- 2. Unit-1
- 3. Unit-2
- 4. Unit-2
- 5. Unit-3
- 6. Unit-4
- 7. Unit-5
- 8. Unit-5

PART-B

OR

Answer one from each unit. Each Question Carries 10 marks.

(5X10=50)

	UNIT 1
9. Question A	OR
Question B	UNIT 2
10. Question A	OR
Question B	UNIT 3
11. Question A	OR
Question B	UNIT 4
12. Question A	OR OR
Question B	
13. Question A	UNIT 5

Chairperson Chairperson Chairperson

Question B

80)mar 28,

D. Chark Kumal CHAIRMAN BOARD OF STUDIES

Shri Gnanambica Degree College (